Blog
Library

Learn signal processing in MATLAB and Python

Features Includes:
  • Self-paced with Life Time Access
  • Certificate on Completion
  • Access on Android and iOS App

Course Preview Video

  • Categories

    Academics

  • Duration

    12:05:17

  • 29 Students Enrolled

Description

Why you need to learn digital signal processing.

Nature is mysterious, beautiful, and complex. Trying to understand nature is deeply rewarding, but also deeply challenging. One of the big challenges in studying nature is data analysis. Nature likes to mix many sources of signals and many sources of noise into the same recordings, and this makes your job difficult.

Therefore, one of the most important goals of time series analysis and signal processing is to denoise: to separate the signals and noises that are mixed into the same data channels.

The big idea of DSP (digital signal processing) is to discover the mysteries that are hidden inside time series data, and this course will teach you the most commonly used discovery strategies.

What's special about this course?

The main focus of this course is on implementing signal processing techniques in MATLAB and in Python. Some theory and equations are shown, but I'm guessing you are reading this because you want to implement DSP techniques on real signals, not just brush up on abstract theory.

The course comes with over 10,000 lines of MATLAB and Python code, plus sample data sets, which you can use to learn from and to adapt to your own coursework or applications.

In this course, you will also learn how to simulate signals in order to test and learn more about your signal processing and analysis methods.

Are there prerequisites?

You need some programming experience. I go through the videos in MATLAB, and you can also follow along using Octave (a free, cross-platform program that emulates MATLAB). I provide corresponding Python code if you prefer Python. You can use any other language, but you would need to do the translation yourself.

I recommend taking my Fourier Transform course before or alongside this course. However, this is not a requirement, and you can succeed in this course without taking the Fourier transform course.

I hope you to see you in class!


Basic knowledge
  • You need high-school-level math, and you need at least basic programming skills in either MATLAB or in Python

What will you learn

By the end of this course, you will gain an understanding of the theory and computer-implementation of the most important digital signal processing operations, including

  • Time series denoising
  • Spectral and rhythmicity analyses
  • Working with complex numbers
  • Filtering
  • Convolution
  • Wavelet analysis
  • Resampling, interpolating, extrapolating
  • Outlier detection
  • Feature detection
  • Variability
Course Curriculum
Number of Lectures: 92 Total Duration: 12:05:17
Reviews
Pei Zhang – September 11, 2019